If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-128x+256=0
a = 15; b = -128; c = +256;
Δ = b2-4ac
Δ = -1282-4·15·256
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-32}{2*15}=\frac{96}{30} =3+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+32}{2*15}=\frac{160}{30} =5+1/3 $
| 7v+3+3v+4=37v= | | -16x+4x=-32+10x | | V(x)=(7-2x)(5-2x)x | | 5-(8v+5)=-4(-4(1=3v) | | 2(2c-1)=4c | | 26=8-4n | | 3-6a=1+2a | | 3(n+6)=18 | | 5a-7=5+3a | | 2a+7=10a-17 | | 10a+1=3a+15 | | 2a+12=3a+7 | | 7(x-3)=3(x-1) | | 3t=100 | | -2a-8=-2 | | -3a-8=-35 | | 1/3x-5+171=× | | 21=1-5a | | -1=3a-16 | | 1=9-2a | | 7+6a=-11 | | 2q+7=q-1 | | 3x-3x=225 | | -8x+5+5x=1–3x–5 | | 5/8k=-5/2 | | Bx5/17=10 | | 56=4(3+2x) | | 3x+2-x+4=18 | | (x-2)^2+x^2+(x+2)^2=83 | | |2v|-4=28 | | 36=n(n+1)/2 | | 3x+2=x+4-18 |